Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the relationship between precipitation (PPT) and aboveground net primary productivity (ANPP) is essential for modeling the global carbon cycle. Across grassland to forest gradients, the PPT‐ANPP relationship is well defined and nonlinear. Temporal patterns within a site over time are more variable and nearly always linear. Linear relationships, however, are inconsistent with positive asymmetry, where increases in ANPP during wet years exceed declines in dry years. The double asymmetry model predicts that concave‐down nonlinearities will occur when extreme high and low PPT years are included in a time series. We tested this prediction using long‐term observational ANPP data along with rainfall manipulation experiments. By combining observational records with experimental treatments, including drought, water addition, and nitrogen addition, we found some support for the double asymmetry model. However, the response under high precipitation coupled with nitrogen addition was concave‐up, not down. By experimentally extending the range of monsoon precipitation, we found a weak but significant, nonlinear PPT‐ANPP relationship, but only when nutrient limitation was alleviated. Our results demonstrate that multiple interacting factors govern the PPT‐ANPP relationship within a site over time, challenging our ability to predict how ANPP will respond to changes in precipitation in the future.more » « less
-
Abstract Dryland productivity is highly sensitive to precipitation variability, and models predict that rainfall variability will increase in the future. Numerous studies have documented the relationship between productivity and precipitation, but most focus on aboveground production (ANPP), while the effects on belowground production (BNPP) remain poorly understood. Furthermore, previous research suggests that ANPP and BNPP are uncoupled within ecosystems, but the degree to which rainfall variability affects the interplay between aboveground and belowground production is unknown. We conducted a long‐term rainfall manipulation experiment in Chihuahuan Desert grassland to investigate how the size and frequency of growing season rain events affected BNPP and its relationship to ANPP. Experimental plots received either 12 small‐frequent rain events or 3 large‐infrequent events during the monsoon season for a total of 60 mm of added rainfall per treatment per year. All plots, including three controls, received ambient rainfall throughout the year. Total BNPP ranged from a low of 94.7 ± 38.2 g m2year−1under ambient conditions to a high of 183.7 ± 44.6 g m2year−1under the small‐frequent rainfall treatment. Total BNPP was highest under small‐frequent rain events, and there was no difference in BNPP between 0–15 and 15–30 cm soil depths in either rainfall treatment. ANPP and BNPP were uncorrelated within rainfall treatments, but weakly positively correlated across all plots and years. Our results contribute to a growing body of research on the importance of small rain events in drylands and provide further evidence regarding the weak coupling between aboveground and belowground processes.more » « less
-
The primary mechanism driving plant species loss after nitrogen (N) addition has been often hypothesized to be asymmetric competition for light, resulting from increased aboveground biomass. However, it is largely unknown whether plants’ access to soil water at different depths would affect their responses, fate, and community composition under nitrogen addition. In a semiarid grassland exposed to 8-years of N addition, we measured plant aboveground biomass and diversity under four nitrogen addition rates (0, 4, 10, and 16 g m 2 year 1), and evaluated plant use of water across the soil profile using oxygen isotope. Aboveground biomass increased significantly, but diversity and shallow soil-water content decreased, with increasing rate of nitrogen addition. The water isotopic signature for both plant and soil water at the high N rate indicated that Leymus secalinus (a perennial grass) absorbed 7% more water from the subsurface soil layer (20e100 cm) compared to Elymus dahuricus (a perennial grass) and Artemisia annua (an annual forb). L. secalinus thus had a significantly larger biomass and was more abundant than the other two species at the high N rate but did not differ significantly from the other two species under ambient and the low N rate. Species that could use water from deeper soil layers became dominant when water in the shallow layers was insufficient to meet the demands of increased aboveground plant biomass. Our study highlights the importance of water across soil depths as key driver of plant growth and dominance in grasslands under N addition.more » « less
-
ABSTRACT Ecological stability plays a crucial role in determining the sustainability of ecosystem functioning and nature's contribution to people. Although the disruptive effects of extreme drought on ecosystem structure and functions are widely recognized, their effect on the stability of above‐ and belowground productivity remains understudied. We assessed the effects of drought on ecosystem stability using a 3‐year drought experiment established in six Eurasian steppe grasslands. The treatments imposed included ambient precipitation, chronic drought (66% reduction in precipitation throughout the growing season), and intense drought (complete exclusion of precipitation for two months during the growing season). We found that drought, irrespective of how it was imposed, reduced the stability of aboveground net primary productivity (ANPP) but had little impact on belowground net primary productivity (BNPP) stability. Reduced ANPP stability under drought was primarily attributed to changes in subordinate species stability, with mean annual precipitation (MAP) and its variability, historical drought frequency, and the aridity index (AI) also influencing responses to extreme drought. In contrast, BNPP stability was not related to any community factor investigated, but it was influenced by MAP variability and AI. Our findings that above‐ and belowground productivity stability in grasslands are differentially sensitive to multi‐year extreme drought under both common (MAP and AI) as well as unique drivers (plant community changes) highlight the complexity of predicting carbon cycle dynamics as hydrological extremes become more severe.more » « less
-
Background and aims: Nutrient addition increases plant aboveground production but causes species richness decline in many herbaceous communities. Asymmetric competition for light and detrimental effects of nitrogen have been shown to cause species richness decline in mesic ecosystems. However, it remains unclear whether and how other limiting factors may also play a role in the decline of species richness, especially in ecosystems where soil water could be more limiting. Methods: We conducted a meta-analysis of > 1600 experiments on nutrient and water addition across grasslands worldwide. Results: We find that nitrogen addition, alone or combined with other nutrients, significantly increases aboveground production but decreases species richness. However, water addition can avoid species loss when nutrients were added, indicating that water is a crucial limiting resource in driving species richness decline under nutrient addition. Overall, water limitation may be the primary driver of species richness decline under nutrient addition in approximately 70% of global grassland areas where mean annual soil water content is ≤ 30%. Therefore, as nutrient availability increases in global grasslands, soil moisture limitation may be responsible for the decline of species richness in regions. Conclusion: Our study quantifies the soil water threshold below which plant species is mainly driven by water limitation, and highlights a novel and widespread mechanism driving species richness decline in global grasslands under nutrient addition.more » « less
-
Abstract The temporal stability of plant productivity affects species' access to resources, exposure to stressors and strength of interactions with other species in the community, including support to the food web. The magnitude of temporal stability depends on how a species allocates resources among tissues and across phenological stages, such as vegetative growth versus reproduction. Understanding how plant phenological traits correlate with the long‐term stability of plant biomass is particularly important in highly variable ecosystems, such as drylands.We evaluated whether phenological traits predict the temporal stability of plant species productivity by correlating 18 years of monthly phenology observations with biannual estimates of above‐ground plant biomass for 98 plant species from semi‐arid drylands. We then paired these phenological traits with potential climate drivers to identify abiotic contexts that favour specific phenological strategies among plant species.Phenological traits predicted the stability of plant species above‐ground biomass. Plant species with longer vegetative phenophases not only had more stable biomass production over time but also failed to fruit in a greater proportion of years, indicating a growth–reproduction trade‐off. Earlier leaf‐out dates, longer fruiting duration and longer time lags between leaf and fruit production also predicted greater temporal stability.Species with stability‐promoting traits began greening in drier conditions than their unstable counterparts and experienced unexpectedly greater exposure to climate stress, indicated by the wider range of temperatures and precipitation experienced during biologically active periods.Our results suggest that bet‐hedging strategies that spread resource acquisition and reproduction over long time periods help to stabilize plant species productivity in variable environments, such as drylands. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Enhancing resilience in formerly degraded ecosystems is an important goal of restoration ecology. However, evidence for the recovery of resilience and its underlying mechanisms require long‐term experiments and comparison with reference ecosystems. We used data from an experimental prairie restoration that featured long‐term soil heterogeneity manipulations and data from two long‐term experiments located in a comparable remnant (reference) prairie to (1) quantify the recovery of ecosystem functioning (i.e., productivity) relative to remnant prairie, (2) compare the resilience of restored and remnant prairies to a natural drought, and (3) test whether soil heterogeneity enhances resilience of restored prairie. We compared sensitivity and legacy effects between prairie types (remnant and restored) and among four prairie sites that included two remnant prairie sites and prairie restored under homogeneous and heterogeneous soil conditions. We measured sensitivity and resilience as the proportional change in aboveground net primary productivity (ANPP) during and following drought (sensitivity and legacy effects, respectively) relative to average ANPP based on 4 pre‐drought years (2014–2017). In nondrought years, total ANPP was similar between remnant and restored prairie, but remnant prairie had higher grass productivity and lower forb productivity compared with restored prairie. These ANPP patterns generally persisted during drought. The sensitivity of total ANPP to drought was similar between restored and remnant prairie, but grasses in the restored prairie were more sensitive to drought. Post‐drought legacy effects were more positive in the restored prairie, and we attributed this to the more positive and less variable legacy response of forb ANPP in the restored prairie, especially in the heterogeneous soil treatment. Our results suggest that productivity recovers in restored prairie and exhibits similar sensitivity to drought as in remnant prairie. Furthermore, creating heterogeneity promotes forb productivity and enhances restored prairie resilience to drought.more » « less
-
ABSTRACT Extreme droughts are intensifying, yet their impact on temporal variability of grassland functioning and its drivers remains poorly understood. We imposed a 6‐year extreme drought in two semiarid grasslands to explore how drought influences the temporal variability of ANPP and identify potential stabilising mechanisms. Drought decreased ANPP while increasing its temporal variability across grasslands. In the absence of drought, ANPP variability was strongly driven by the dominant plant species (i.e., mass‐ratio effects), as captured by community‐weighted traits and species stability. However, drought decreased the dominance of perennial grasses, providing opportunities for subordinate species to alter the stability of productivity through compensatory dynamics. Specifically, under drought, species asynchrony emerged as a more important correlate of ANPP variability than community‐weighted traits or species stability. Our findings suggest that in grasslands, prolonged, extreme droughts may decrease the relative contribution of mass‐ratio effects versus compensatory dynamics to productivity stability by reducing the influence of dominant species.more » « less
-
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grasslandAbstract. Although the negative consequences of increased nitrogen (N) supply for plant communities and soil chemistry are well known, most studies have focused on mesic grasslands, and the fate of added N in arid and semi-arid ecosystems remains unclear. To study the impacts of long-term increased N deposition on ecosystem N pools, we sampled a 26-year-long fertilization (10 g N m−2 yr−1) experiment in the northern Chihuahuan Desert at the Sevilleta National Wildlife Refuge (SNWR) in New Mexico. To determine the fate of the added N, we measured multiple soil, microbial, and plant N pools in shallow soils at three time points across the 2020 growing season. We found small but significant increases with fertilization in soil-available NO3--N and NH4+-N, yet the soil microbial and plant communities do not appear to be taking advantage of the increased N availability, with no changes in biomass or N content in either community. However, there were increases in total soil N with fertilization, suggesting increases in microbial or plant N earlier in the experiment. Ultimately, the majority of the N added in this multi-decadal experiment was not found in the shallow soil or the microbial or plant community and is likely to have been lost from the ecosystem entirely.more » « less
An official website of the United States government
